
 

DEEP NEURAL ARCHITECTURE FOR MULTI-MODAL RETRIEVAL 

by 

SAEID BALANESHINKORDAN 

THESIS 

Submitted to the Graduate School 

of Wayne State University, 

Detroit, Michigan   

in partial fulfillment of the requirements 

for the degree of 

MASTER OF SCIENCE 

2018 

MAJOR: COMPUTER SCIENCE 

Approved By: 

 

Advisor          Date 



ii 
 

DEDICATION 
 

 
 
 

To My Wife Elaheh 
  



iii 
 

ACKNOWLEDGEMENTS 

I would like to express my warmest gratitude to my advisor Dr. Alexander Kotov who 

believed in me and encouraged me to continue learning, working hard, and taking new 

challenges. I am very grateful for his tremendous support and all his comments and discussions. 

I would like to thank my other thesis committee members Dr. Jing Hua and Dr. Zichun Zhong for 

their valuable feedback on my work and their useful suggestions. I would like to sincerely thank 

alumni and members of the Textual Data Analytics Laboratory (TEANA) group. Many thanks to 

my friends and lab mates Fedor Nikolaev, Mehedi Hassan and Diana Diaz for their insightful 

discussions and feedbacks that helped improve this work. Also, I would like to thank Dr. Ming 

Dong and his students Shixing Chen, Haotian Xu, and Hajar Emami for being great lab mates. I 

would like to express my gratitude to the Department of Computer Science and its chair Dr. Loren 

Schwiebert for their help and support. Many thanks and acknowledgments go to my parents for 

all their help, support and the chances they have given me over the years. Above all, I would like 

to thank my wife Elaheh for standing beside me throughout my graduate studies and writing this 

thesis. I am sincerely grateful for her many contributions to my work and my life. 

  



iv 
 

TABLE OF CONTENTS 

Dedication ........................................................................................................................................................................................................ ii 

Acknowledgements .................................................................................................................................................................................. iii 

List of Tables ……….......................................................................................................................................................................................... vi 

List of Figures ….…......................................................................................................................................................................................... vii 

Chapter1 Introduction ............................................................................................................................................................................. 1 

Chapter 2 Related Work ………….............................................................................................................................................................. 4 

Chapter 3 Method ....................................................................................................................................................................................... 7 

3.1 Proposed Neural Architecture …………………………………….......................................................................................... 7 

3.2 Embedding layers .............................................................................................................................................................. 7 

3.3 Relevance matching layers ..................................................................................................................................... 11 

3.4 Gating Network ……………………………………………………………................................................................................................ 11 

3.5 Extensions to other Cross- and Multi-modal Retrieval Tasks ……………………….………………………..…. 12 

3.6 Training ................................................................................................................................................................................. 13 

3.7 Search ……………………………….……………………………………............................................................................................................ 15 

Chapter 4 Experiments ......................................................................................................................................................................... 16 

4.1 Datasets................................................................................................................................................................................. 16 

4.2 Experimental Setup ...................................................................................................................................................... 17 

4.3 Baselines .............................................................................................................................................................................. 18 

4.4 Results and Discussion ............................................................................................................................................... 20 

Chapter 5 Future Works ……………..……………………………………………........................................................................................................ 26 

Chapter 6 Conclusions .......................................................................................................................................................................... 27 



v 
 

References .................................................................................................................................................................................................... 28 

Abstract ........................................................................................................................................................................................................... 36 

Autobiographical Statement …………………………………………………………………....................................................................................... 37 

  



vi 
 

LIST OF TABLES 

Table 1: Summary of notation ........................................................................................................................................................... 8 

Table 2: Performance of the proposed architecture (JEMR) and the baselines, as measured 
by MAP. ⋆ and † indicate statistically significant improvements according to Fisher’s 
randomization test with p < 0.05 over the best performing baselines THN [10] and 
MCNN [41], respectively. ……...................................................................................................................................... 20 

Table 3: MAP of JEMR on NUS-WIDE dataset when different search methods are used. ….……….….. 24 

Table 4: MAP of JEMR on NUS-WIDE dataset when different CNN networks are used in the 
proposed architecture. ………………………………………………..…..…....................................................................................... 24 

  



vii 
 

LIST OF FIGURES 

Figure 1: Projection of textual and visual components of an example query and multi- modal 
retrieval unit into the space of concept embeddings. The query term “plane” can be 
matched in both textual and visual components of a given retrieval unit, the query term 
“LAX” can be matched only in its textual component, while the term “sunset” can only 
be matched in its visual component. …………………………………………….…………………................................................. 2 

Figure 2: Image captioning layers in the proposed deep neural architecture for T → T I 
task. A combination of convolutional layers conv1-conv5 and fully connected layers 
fc1-fc3 is used for image feature extraction. LSTM is used for caption generation. …... 9  

Figure 3: Projection layers in the proposed neural network architecture for T → T I task. QTTi, 
CTTi and CITi are low-dimensional representations of the i-th topic in the query’s text, 
collection item’s text and collection item’s image, respectively. QTC, CTC and CIC are 
low-dimensional representations of concepts in query’s text, collection item’s text and 
collection item’s image. ……………………………………………………………………………………………………….……………………………..… 10 

Figure 4: Procedure to train the parameters of the neural network in the last training stage. ….. 13 

Figure 5: Precision-recall curves for the proposed method and the baselines for I → T and T →I 
tasks. ……………………………………………………………………………..………………………………………………………………...................................... 22  

Figure 6: Precision-recall curves for the proposed method and the baselines forT → T and T →
IT tasks. …………………………………………………………………………...................................................................................................... 23  



1 
 

 

CHAPTER 1 INTRODUCTION 

Images and text are an integral part of the Web, from photo sharing and social media 

platforms to on-line encyclopedias. However, Web search systems still consider images as a 

separate vertical from text and provide only text-to-image (T → I) search functionality. Yet, the 

spectrum of information needs of Web search system users goes well beyond text-to-image 

searches and includes the search tasks, in which pairs of a textual fragment and an image form 

atomic retrieval unit, such as in image-to-image and text (I → IT) and text-to-image and text (i.e. 

T → IT) retrieval scenarios. Images rarely exist without text and, as illustrated in Figure 1, often 

convey complementary information. Therefore, it is natural to consider both text and image as 

one retrieval unit. 

These multi-modal retrieval scenarios are facing the same fundamental problem of 

semantic matching of queries to retrieval units, as textual information retrieval (IR). In the case 

of textual IR, this problem is typically addressed by projecting sparse bag-of-words 

representations of queries and retrieval units (e.g., documents, passages, sentences) onto dense 

continuous representations (i.e., embedding vectors), which capture their semantics in a low-

dimensional space, and matching them in this space [13, 56]. Shallow neural architectures [43] 

trained with the goal of making embeddings of words that frequently appear in the same context 

to be close to each other have emerged as a computationally efficient way of obtaining word 

embeddings. At the same time, methods utilizing word embeddings for document [18] and query 

[5, 37] expansion as well as in pseudo-relevance feedback [15, 65] have demonstrated their 

effectiveness in addressing the problem of vocabulary gap in textual IR. Furthermore, several 

neural architectures based on Convolutional Neural Network (CNN) [39] and Long-short Term 
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Memory Network (LSTM) [26], which take word embedding based representations of queries and 

documents as input to estimate their relevance, have been recently proposed for Web search 

[44], ad-hoc document retrieval [21], microblog retrieval [47] and question answering [57]. 

 

Figure 1: Projection of textual and visual components of an example query and multi-modal 
retrieval unit into the space of concept embeddings. The query term “plane” can be matched in 
both textual and visual components of a given retrieval unit, the query term “LAX” can be 
matched only in its textual component, while the term “sunset” can only be matched in its visual 
component. 
 

Deep neural architectures based on CNNs [39] have also been successfully applied to 

unsupervised feature extraction and achieved state-of-the-art performance for many computer 

vision tasks, such as image classification [36, 53] and image recognition [24]. Significant progress 

in utilizing neural networks for image classification and learning of word embeddings led to the 

emergence of hybrid neural architectures for cross-modal retrieval tasks, such as generating 

image descriptions (i.e., captions) [16, 31, 30, 32, 33, 42, 50, 55], some of which surpassed human 

performance for this task. A substantial amount of research also focused on efficient cross-modal 

retrieval. In particular, hashing-based methods [9, 10, 29, 40, 59, 61] apply hashing to transform 

different modalities into the same Hamming space and learn quantizers to convert the 

isomorphic latent features into compact binary codes, which provide a compromise between 
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efficiency and accuracy of cross-modal retrieval. However, the problem of multi-modal retrieval 

(when retrieval units include different modalities) has been significantly less studied. 

Drawing inspiration from the success of image captioning, we propose a gated neural 

architecture called JEMR (Joint-Embedding for Multi-modal Retrieval) to represent image and 

keyword queries as well as multi-modal retrieval units in the space of word embeddings and 

semantically match them in that space, as illustrated in Figure 1. The proposed architecture 

consists of the embedding and relevance matching layers. In the embedding layers, the feature 

vector extracted by a deep CNN for a query or a collection item image is used as the initial hidden 

state of LSTM to generate the embedding vectors corresponding to image descriptions, which 

are then used as input to the relevance matching layers. Both embedding and relevance matching 

layers are jointly trained to minimize a structured hinge loss. The proposed architecture also 

includes adaptive gating units that regulate information flow between the embedding and 

matching layers. 

Retrieval is done based on a nearest neighbor search method to efficiently find collection 

items that are the most similar to a given query, as measured by the output of the matching 

layers. The proposed architecture is highly modular and can be easily adapted to many cross- and 

multi-modal retrieval scenarios. 

This thesis is based on our earlier work on deep multi-modal retrieval [6] and is organized 

as follows. In Chapter 2, we provide a brief overview of the relevant prior work. The proposed 

deep neural architecture along with the search method are discussed in Chapter 3. Experimental 

results are presented and analyzed in Chapter 4. Chapter 5 and Chapter 6 contain feature works 

and our concluding remarks.  



4 
 

 

CHAPTER 2 RELATED WORK 

Prior to discussing the details of the proposed method, we provide an overview of the 

recent research on neural architectures in textual IR, learning multi-modal representations and 

cross-modal IR. 

Neural architectures in textual IR. Deep learning methods are rapidly gaining popularity 

in textual IR and related fields, such as question answering. As the first step of these methods, 

documents and queries are typically transformed into different representations, such as letter 

tri- grams [28, 48], word embeddings [43] or matching histograms [21]. These representations 

are then used as input to fully connected feed-forward [28, 21], convolutional [48] or recurrent 

[57] neural networks for estimating relevance of documents to queries. Neural architectures for 

textual information retrieval tasks can also include gating units [21], which allow to directly 

incorporate additional relevance signals and heuristics, such as the importance weight or inverse 

document frequency of a query term. 

Learning multi-modal representations. Similar to text retrieval, the first step of cross-

modal retrieval methods typically involves obtaining dense representations for textual and visual 

modalities. The state-of-the-art way to obtain embedding of an image is to use activations in a 

penultimate layer of deep neural architectures for object recognition [36], which typically consist 

of several layers of convolutional filtering, local contrast normalization and max-pooling followed 

by several fully connected layers, after training those architectures on large image collections, 

such as ImageNet [46]. A variety of methods can be used to obtain dense representations for 

textual modality. Besides word embedding methods [43, 45], textual modality in multi-modal 

retrieval tasks can also be represented using a letter-trigram matrix [16]. Alternatively, hand-
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crafted textual features, such as bag-of-words counts and LDA topics, can be passed through 

several fully connected layers to obtain word embeddings [29]. 

Linear [63] or non-linear [17, 58] mappings can be learned to convert independently 

obtained embeddings of images and words into multi-modal embeddings in the same semantic 

space for a particular cross-model task, such as image captioning or retrieval. Alternatively, zero-

shot learning methods train direct mappings of image embeddings into the space of word 

embeddings [49] and vice versa [12]. Image representations have also been incorporated into 

the skip-gram model [43] for learning word embeddings enriched with perceptual information 

[25, 38]. 

Cross-modal IR. Cross-modal (image-to-text and text-to-image) retrieval methods can be 

categorized into correlation-, semantic-, and hashing-based ones. Correlation-based methods 

utilize Canonical Correlation Analysis (CCA) [23] and its variants, such as kernel CCA [27] and 

normalized CCA [20], to capture linear and/or non-linear correlations between textual and visual 

modalities for bi-directional ranking of images and captions. Semantic methods leverage dense 

multi-modal representations and deep neural architectures. For example, a neural architecture 

for cross-modal retrieval, which combines one CNN for image representation and one CNN for 

calculating word-level, phrase-level and sentence-level matching scores between an image and 

a sentence, was proposed in [41]. 

A similar task to cross-modal retrieval is image captioning or associating textual 

descriptions (e.g. sentences [30, 50] or sentence fragments [31]) either with entire images [55] 

or their fragments [31, 30]. An image captioning method proposed in [16] ranks textual fragments 

for a given image and vice versa based on the cosine similarity between their embeddings. 
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Captions can also be generated by sampling from a log-bilinear language model conditioned on 

the embeddings of already generated caption words and the image feature vector [32]. 

Neural network architectures proposed for image captioning are typically based on the 

encoder-decoder framework. For example, a deep CNN can be used as an encoder and LSTM as 

a decoder [55]. A combination of CNN and LSTM was used as an encoder and multiplicative neural 

language model incorporating linguistic structure was used as a decoder in [33]. Image feature 

vector obtained by a deep CNN can also be directly incorporated into an RNN [42] for caption 

generation. 

Finally, hashing-based cross-modal retrieval methods [9, 10, 29, 40, 59, 61] learn hash 

functions that map images and text in the original space into a Hamming space of binary codes, 

such that the similarity between the objects in the original space is preserved in the Hamming 

space. Some hashing-based methods [10, 9, 29] also leverage deep CNNs for creating dense 

representations of images. 

Approximate Nearest Neighbor (ANN) [1] search algorithm accompanied by a proper 

technique to index collection items enables fast and accurate retrieval in a Hamming space. For 

this reason, ANN is frequently used in cross-modal hashing methods to rank collection items in 

the order of their similarity to a query. For example, [29] used ANN to accelerate retrieval of 

binary hashes obtained using CNN, while [64] used ANN coupled with a sensitive Jaccard 

similarity metric to efficiently search in sparse and high-dimensional space of cross-modal codes. 
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CHAPTER 3 METHOD  

3.1. Proposed Neural Architecture  

Without loss of generality, the proposed neural architecture is discussed for the case of 

text-to- image and text (𝑇 → 𝐼𝑇) retrieval task (i.e., retrieving a multi-modal collection item with 

a textual modality 𝑑𝑡 and a visual modality dv given a textual keyword query 𝑞). However, we 

would like to emphasize that the proposed architecture is general and can be easily adapted to 

other cross- and multi-modal retrieval tasks (e.g. when collection items have only textual or visual 

modality).  

The proposed neural architecture consists of two types of layers. The embedding layers 

(illustrated in Figure 2 for images) extract concept and topic embeddings from textual and visual 

modalities of queries and collection items, while the relevance matching layers (illustrated in 

Figure 3) calculate the relevance score of a query to a collection item.  

3.2. Embedding layers  

The goal of these layers is to create dense low-dimensional representations of a query (q) 

and different modalities of a collection item (𝑑𝑡 and 𝑑_𝑣). The output of these layers consists of 

the two sets of matrices of low-dimensional representations S′ and S′′ that are used later in 

estimating the relevance of a collection item to a query. Both of these matrices contain 

embeddings of concepts from a controlled vocabulary. In our experiments, this controlled 

vocabulary consists of the words in the titles of all English Wikipedia articles. Each embedding 

vector in these matrices is a representation of a concept, which can be a word in a query or 

collection item’s text (textual concept) or an object in a collection item’s image (visual concept).  
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Table 1. Summary of notation 

Var. Description 

𝑞 query 

𝑑 multi-modal collection item 

𝑑t textual modality of 𝑑 

𝑑v visual modality of 𝑑 

q𝑖 𝑖th concept embedding vector of 𝑞 

dt,𝑖 𝑖th concept embedding vector of 𝑑t 

dv,𝑖 𝑖th concept embedding vector of 𝑑v 

Q′ concept embedding matrix for 𝑞 

Dt
′ concept embedding matrix for 𝑑t 

Dv
′  concept embedding matrix for 𝑑v 

Q𝑖
′′ 𝑖th topic embedding matrix for 𝑞 

Dt,𝑖
′′  𝑖th topic embedding matrix for 𝑑t 

Qv,𝑖
′′  𝑖th topic embedding matrix for 𝑑v 

𝑝(𝑑|𝑞) probability of 𝑑 being relevant to 𝑞 

The first set, S′ =  {Q′ , Dt
′  , Dv

′  }, consists of concept embedding matrices that are used for 

computing the matching scores at the concept level. The matrices in this set contain embeddings 

of concepts in a query, collection item’s text or collection item’s image, respectively. The second  

set, 𝑆′′ =  {𝑄1
′′ , 𝑄2

′′, . . . , 𝐷𝑡,1
′′  , 𝐷𝑡,2

′′ , . . . , 𝐷𝑣,1
′′ , 𝐷𝑣,2

′′ , . . . }, consists of topic embedding matrices that 

are used for computing the matching scores at the topic level. We obtain each of the matrices  

in this set by clustering the embedding vectors of all concepts in a given modality of a query or  

collection item (e.g. clustering embeddings of words in a keyword query). We use cosine 

similarity as a measure of semantic similarity of concept vectors. For the sake of notational 

simplicity, in Figure 3, we denote the matrices 𝑄′, 𝐷𝑡
′ and 𝐷𝑣

′  in the set 𝑆′ as QTC (Query Text 

Concepts), CTC (Collection Text Concepts) and CIC (Collection Image Concepts), respectively, and 

the matrices 𝑄′′, 𝐷′′ and 𝐷′′ in the set 𝑆′′ as QTTi (Query Text Topic 𝑖), CTTi (Collection Text Topic 

𝑖) and CITi (Collection Image Topic 𝑖).  
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Figure 2: Image captioning layers in the proposed deep neural architecture for T → T I task. A 
combination of convolutional layers conv1-conv5 and fully connected layers fc1-fc3 is used for 
image feature extraction. LSTM is used for caption generation.  

If the number of concepts in 𝑞, 𝑑𝑡 and 𝑑𝑣 is |𝑄′|, |𝐷𝑡
′| and |𝐷𝑣

′ |, and 𝑘 is the size of the  

embedding vector representing each concept, then the dimensions of 𝑄′, 𝐷𝑡
′ and 𝐷𝑣

′  are 

𝑘 ×  |𝑄′|, 𝑘 × |𝐷𝑡
′| and 𝑘 × |𝐷𝑣

′ |, respectively. In our experiments, we set k to 300. On the other 

hand, if 𝑄′, D′ and D′ have |𝑄′′ |, |𝐷𝑡
′′| and |𝐷𝑣

′′| clusters (topics), then 𝑄′′ , 𝐷𝑡
′′ and 𝐷𝑣

′′ contain 

embedding vectors of size 𝑘 that correspond to each of the topics in 𝑞, 𝑑𝑡 and 𝑑𝑣. 

word2vec [43] embeddings were used to represent the concepts in textual modality of queries  

that exist in the adopted controlled vocabulary. Embeddings of concepts in the visual modality 

were obtained by adopting the neural architecture for image captioning proposed in [55] 

(illustrated in Figure 2), which combines a deep CNN [36] for image feature extraction and LSTM 

[26] for caption generation. Considering all the words in the adopted controlled vocabulary as 

candidate visual concepts, we use LSTM to model 𝑝(𝑑𝑣,𝑖+1|𝑑𝑣,1, . . . , 𝑑𝑣,𝑖), which is the probability 

of the (𝑖 +  1)th word embedding vector 𝑑𝑣,𝑖+1 to be used for representing a visual concept in 

an image of the collection item, given the word embedding vectors 𝑑𝑣,1, . . . , 𝑑𝑣,𝑖 that have already 

been generated as visual concepts for the image, and select the word embedding 𝑑𝑣,𝑖+1 that 

maximizes the probability 𝑝(𝑑𝑣,𝑖+1|𝑑𝑣,1, . . . , 𝑑𝑣,𝑖). This criterion ensures that the selected visual 

concept best describes a given image in conjunction with previously selected 𝑖 concepts. As can 
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be seen from Figure 2, in this iterative approach, the first concept vector (𝑑𝑣,1) is generated by 

maximizing the probability computed directly from the feature vector obtained from the CNN 

layers (dv,0). We repeat this process until LSTM generates a pre-defined number of visual 

concept embedding vectors for a given collection item image.  

 

Figure 3: Projection layers in the proposed neural network architecture for T → TI task. QTTi, CTTi 
and CITi are low-dimensional representations of the 𝑖-th topic in the query’s text, collection item’s 
text and collection item’s image, respectively. QTC, CTC and CIC are low-dimensional 
representations of concepts in query’s text, collection item’s text and collection item’s image.  

Although hybrid neural architectures have been studied for image captioning [55], the 

objectives of these architectures are different from this component of our proposed architecture 

for multi-modal retrieval task. For the image captioning task, LSTM and CNN layers are trained 

with the goal of generating image descriptions that are the most understandable by humans, 

while for the multi-modal retrieval task, these layers are trained with the goal of producing the 

image descriptions that maximize retrieval accuracy.  
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3.3. Relevance matching layers  

The goal of these layers is to calculate 𝑝(𝑑|𝑞), the probability of a collection item 𝑑 to be 

relevant to query 𝑞. We further decompose 𝑝(𝑑|𝑞) into topic and concept relevance matching 

scores as:  

𝑝(𝑑|𝑞) ≈ 𝜌(𝑄′, 𝐷′𝑡)𝑝(𝐷′𝑡|𝑄′) +  𝜌(𝑄′, 𝐷′𝑣)𝑝(𝐷′𝑣|𝑄′)

+ ∑ 𝜌(𝑄′′, 𝐷′′)𝑝(𝐷′′|𝑄′′) + 𝜌(𝑄′′, 𝐷′′)𝑝(𝐷′′|𝑄′′)

𝑗,𝑘

   

where 𝜌(·,·) computes the prior probabilities for the concept and topical relevance, which are 

obtained by the gating network described in Section 3.4. A similar idea of lexical and semantic 

matching has been shown to be effective in textual IR [35, 34, 60].  

The probabilities 𝑝(𝐷𝑡
′ |𝑄′), 𝑝(𝐷𝑣

′  |𝑄′), 𝑝(𝐷𝑡,𝑗
′′  |𝑄′′) and 𝑝(𝐷𝑣,𝑗

′′  |𝑄′′) are computed as a 

combination of Bidirectional Long Short-Term Memory (BiLSTM) [54] units, max-pooling and 

cosine similarities, as shown in Figure 3.  

3.4. Gating Network  

To account for the semantic similarity of individual concept vectors, we use multiple gates 

to regulate the concept and topic relevance probabilities. In other words, similar to LSTM [26], 

High- way or Residual Networks [24, 51], we provide connections from the input layer of the 

relevance matching component to its last layer through the gating units that regulate the 

information flow from these layers. The gate function 𝜌(𝛷, 𝛹) depends on the sum of L2-norms 

of the distances between the elements of 𝛷 =  [𝜑1, 𝜑2, . . . ] and 𝛹 =  [𝜓1, 𝜓2, . . . ] as:  

 𝜌(𝛷, 𝛹) ≈ 1 − (
 min

𝑖
∥𝜑𝑖 − 𝜓𝑙∥2

2 

2|𝛹|
+

 min
𝑙

∥𝜑𝑖 − 𝜓𝑙∥2
2 

2|𝛷|
) ,       𝛷, 𝛹 ∈  {𝑄′, 𝐷𝑡

′, 𝐷𝑣
′ , 𝑄𝑘

′′, 𝐷𝑡,𝑗
′′  , 𝐷𝑣,𝑗

′′  }  
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where |𝛷| and |𝛹| are the number of embedding vectors in 𝛷 and 𝛹. Since 𝜑𝑖 and 𝜓𝑙  are 

normalized vectors, finding min
𝑖

∥ 𝜓𝑖  − 𝜑𝑙 ∥2 is equivalent to finding a concept vector in 𝛷 that 

has the highest cosine similarity with 𝜓𝑗 . The score ∑ min
𝑖

∥ 𝜑𝑖  −  𝜓𝑙  ∥2 𝑙  is the sum of distances 

between all embedding vectors in Ψ and their most similar embeddings in Φ. The second term in 

the above equation accounts for the cases when |𝛹|  ≠  |𝛷|. It can be easily shown that this gate 

function always has values between zero and one, and it computes similarity between the most 

similar pairs in two sets of embedding vectors 𝛷 and 𝛹. Considering these gating units, the 

estimated relevance probability of two matrices of embeddings 𝛷 and 𝛹 is obtained as the 

product of 𝑝(𝛹|𝛷) calculated by the relevance matching layers and 𝜌(𝛷, 𝛹) calculated by the 

gating units.  

3.5. Extensions to other Cross- and Multi-modal Retrieval Tasks  

Besides T→IT (shown in Figure 3), the proposed method is evaluated in Chapter 4 for five 

other cross- and multi-modal retrieval tasks (T→I, I→T, I→I, T→T and I→TI). The architectures for 

these tasks can be straightforwardly obtained from the one for the T→IT task. For example, the 

neural architecture for the I→T task has CNN and LSTM layers associated with the query and an 

embedding layer associated with the collection item. Parallel projection and matching layers that 

share the same set of weights can be added to the proposed architecture to extend this 

architecture to the cases when more than one textual or visual modality is associated with a 

query or a collection item.  
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3.6. Training  

The training data for the proposed architecture consists of triplets of related and 

unrelated collection items to a given query. If we designate one of these triplets as (𝑞, 𝑑𝑖
+, 𝑑𝑖

−) 

and a vector of parameters as 𝜃, then finding 𝜃 involves minimizing the following hinge loss:  

min
𝜃

||𝜃||
2

+ ∑ max(0, 𝑝(𝑑 |𝑞)  −  𝑝(𝑑 |𝑞)  +  𝛽)
(𝑞,𝑑+,𝑑−)∈Τ

  

where 𝑇 is the set of triplets in the training data, 𝜆0 is a constant, and 𝛽 is a desired margin 

between the relevance probabilities of relevant and non-relevant collection items with respect 

to a query. The second term in the objective function of the above optimization problem is our 

training loss (𝐿(𝜃)) which enforces 𝑝(𝑑𝑖
+ |𝑞)  >  𝑝(𝑑𝑖

− |𝑞). The loss function can also be written 

in terms of the concept and topic relevance probabilities as:  

𝐿(𝜃) =  ∑ (𝜌(𝑄′, 𝐷′)max (0, 𝑝(𝐷′ + |𝑄′) − 𝑝(𝐷′ − |𝑄′) + 𝛽′)

(𝑞,𝑑+,𝑑−)∈Τ

 

+𝜌(𝑄′, 𝐷′) max(0, 𝑝(𝐷′ + |𝑄′) −  𝑝(𝐷′ − |𝑄′) +  𝛽′) 

+𝜌(𝑄′′, 𝐷′′) max(0, 𝑝(𝐷′′ + |𝑄′′) − 𝑝(𝐷′′ − |𝑄′′) + 𝛽′′) 

+𝜌(𝑄′′, 𝐷′′ )max (0, 𝑝(𝐷′′ + |𝑄′′) − 𝑝(𝐷′′ − |𝑄′′) + 𝛽′′) ) 

where the prior probabilities and the margin parameters 𝛽𝑡
′, 𝛽𝑣

′  , 𝛽𝑡
′′ and 𝛽𝑣

′′ are independent of 

the neural network.  

 

Figure 4: Procedure to train the parameters of the neural network in the last training stage. 
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The structured loss function in the above equation can be viewed as a sum of four 

different loss functions. The first two loss functions depend on the probability of relevance of 

different modalities of a collection item and a query. The last two loss functions depend on the 

probability of topical relevance of a collection item and a query.  

The proposed architecture is trained in several stages. In the first training stage, a shallow 

neural network is trained by using the skip-gram model [43] over the chosen controlled concept 

vocabulary. In the second training stage, the image feature extraction network is trained. In the 

third stage, the parameters of the LSTM layers that generate visual concept vectors are trained. 

Next, the parameters of the BiLSTM layers are trained, and finally, in the last training stage, the 

parameters of the relevance matching layers are trained.  

In the first training stage, we utilize word2vec vectors pre-trained for 3 million words and 

phrases on a Google News corpus1 and prune the table of word embeddings to keep the ones 

with a word or a phrase that exists in our controlled vocabulary. We use the pruned table as the 

table of concept vectors. In Stage 2, we train weights for conv1–5 and fc1–3 layers on ILSVRC- 

2012 dataset2. In Stage 3, we use the training data from 2015 MS COCO Image Captioning 

Challenge [55] to train LSTM layers. In Stage 4, to train the BiLSTM layers, we use the training 

data from Yahoo Question answering dataset, which is described in Chapter 4. Finally, as shown 

in Figure 4, in the last stage, we use the training data from multi-modal retrieval datasets, which 

are described in Chapter 4. The parameters of the fc2-fc3 and LSTM and BiLSTM layers are fine-

tuned in the last training stage.  

                                                      
1 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit 
2 https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet 
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3.7. Search  

We considered the inverse of the relevance matching score between a collection item 

and a query computed by the proposed architecture as a distance and adopted two distance-

based search methods, a brute-force k-nearest neighbor search (k-NN) and approximate k-

nearest neighbor (ANN) [22] to find collection items that have the maximum relevance matching 

scores (or mini- mum distance) with respect to a given query.  
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CHAPTER 4 EXPERIMENTS 

We evaluate our proposed architecture using two datasets, which were chosen with the 

goals of (1) investigating whether JEMR over-fits the training data, (2) evaluating JEMR on a 

dataset without explicit bridge information between textual and visual modalities of collection 

items, and (3) evaluating JEMR on a dataset with out-of-sample images and texts. We compare 

the performance of our proposed method with two state-of-the-art unsupervised and three 

supervised baselines that leverage deep neural networks. We also investigate the effect of image 

feature extractors on the performance of our proposed architecture by examining the cases of 

using image feature extractors other than AlexNet. Finally, we examine the effect of a number of 

acceleration methods on the speed of the proposed method. The proposed method is compared 

with the baselines based on Mean Average Precision (MAP) and Precision-Recall curves. 

4.1. Datasets 

For all experiments in this work, we use the two datasets based on the ones in [10] and 

[61]. NUS-WIDE[11], the first dataset, is a multi-modal dataset with 269,648 image-tags pairs, 

5,018 tags and a ground truth for 81 concept categories. Each image in the NUS-WIDE or 

ImageNet dataset[14] belongs to a category. NUS-WIDE and ImageNet datasets have 16 of these 

categories in common. We prune images from NUS-WIDE that do not belong to any of these 

common categories. NUS-WIDE contains one textual document for each image, which is obtained 

by aggregating all its corresponding tags. We obtain the query set for NUS-WIDE by randomly 

selecting 2000 textual documents and 2000 visual documents from NUS-WIDE. 
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The other dataset is ImageNet-YahooQA [10], which consists of 10 million images from 

ImageNet [14] and 300,000 texts obtained by using Yahoo Query Language API3. This dataset is 

generated by using the tags from the NUS-WIDE dataset, i.e., 5,018 tags in NUS-WIDE are used 

as keyword queries to obtain the set of Yahoo QAs. The relevant answers to questions in Yahoo 

QAs dataset are considered as the textual documents in ImageNet-YahooQA. The goal of 

multimodal retrieval using this dataset is to find answers from Yahoo QAs dataset that are 

semantically related to an image query randomly chosen from the ImageNet dataset and vice 

versa. In other words, only T → I and I → T retrieval tasks can be examined on this dataset. 

Multi-modal dataset similar to ImageNet-YahooQA is MIRFLICKR-Yahoo Answer dataset 

introduced in [61]. Similar to the NUS-WIDE, we prune ImageNet-YahooQA by removing the 

images in ImageNet that do not have any of 5,018 tags in NUS-WIDE. Similar to NUS-WIDE, we 

obtain a query set by randomly selecting 2000 texts and 2000 images from ImageNet-YahooQA. 

In the last training stage described in Section 3.6, we use the training data from NUS-

WIDE for experiments on both ImageNet-YahooQA and NUS-WIDE datasets. To obtain the 

ground truth for evaluation, we assumed that any pair of query and collection items (either 

containing image, text or both) are relevant, if both of them belong to at least one of the 16 

categories that NUS-WIDE shares with ImageNet. 

4.2. Experimental Setup 

We used TensorFlow version 1.0.14 to implement and train our deep neural architecture 

on a Linux server with a NVIDIA Tesla K10 GPU with batch size 32 for 100 epochs. We use back 

                                                      
3 https://developer.yahoo.com/yql/?guccounter=1 
4 https://github.com/tensorflow/tensorflow/releases/tag/v1.0.1 
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propagation with stochastic gradient descent to train the parameters of our proposed deep 

neural network. To speed up mini-batch learning, RMSProp was used with a decay of 0.9, and 

𝜀 = 1.0. Hyper-parameters (e.g. 𝜌, 𝛽) were optimized using coordinate ascent based on three-

fold cross validation. 

As mentioned earlier, besides using AlexNet as the image feature extractor, we also 

experimented with ResNet 152 [24], Inception V3 [53] and Inception-ResNet-v2 [52]. We use the 

pretrained weights of these CNNs, which are publicly available for Tensorflow5 and adapt the 

weights of AlexNet that are publicly available in Caffe6 to Tensorflow. 

4.3. Baselines 

In the experiments, we consider the following two unsupervised and three supervised 

baselines:  

- CCA-MV [19]: extends canonical correlation analysis (CCA) to the case of having multiple views 

of visual, textual and semantic features obtained by clustering words. We use a three-view CCA 

(“CCA (V+T+C)” in [19]). We use the same list of features adopted in [19] to implement this 

method. 

- CCQ [40]: is an unsupervised cross-modal hashing based retrieval method that adopts a unified 

optimization framework to jointly learn the latent space and similarity preserving composite 

quantization that maximize correlation. Unlike JEMR, CCQ does not rely on neural networks. 

DSM [62]: similar to JEMR provides real-valued representations for visual and textual modalities. 

However, DSM also uses CNN and hand-crafted features to obtain representations of visual and 

                                                      
5 https://github.com/tensorflow/models/tree/master/slim 
6 https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet 
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textual modalities. The hand-crafted features are extracted using topic models and bag-of-words. 

- DVSH [9]: adopts a two-sided deep CNN-LSTM network for joint representation learning and 

hash coding. One side applies CNN to project images and LSTM to project text into a common 

subspace and another LSTM network computes the matching score of these projected 

modalities. The other side, utilizes CNN and LSTM networks to encode the textual and visual 

modalities of collection items and then it computes the similarity between the generated 

isomorphic hash codes. The network is trained according to the computed matching score and 

the similarity of the generated hash codes. 

- THN [10]: adopts CNN and multilayer perceptrons and has a similar training process to JEMR, as 

both architectures utilize the training data from different datasets to train different components 

of the network. The main goal of using diverse training data is to enable the retrieval system to 

process queries in a collection that has a different distribution. For example, given a query 

selected from Yahoo QAs dataset, it allows the retrieval system to obtain relevant images in 

ImageNet dataset. 

- MCNN [41]: adopts one CNN to learn image representations and Skip-gram method to learn 

text representations, and another CNN to compute the multi-modal matching scores between a 

query and collection items. This method performs word-level, phrase-level and sentence-level 

matching using a matching CNN.  

Similar to JEMR, DSM, DVSH, THN, and MCNN adopt deep neural networks to extract 

features from query and collection items. Specifically, DVSH is similar to JEMR in that it uses a 

hybrid CNN-LSTM network. However, unlike JEMR, DVSH and THN both employ hashing methods 
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in approximating nearest neighbor search. We used 16 bits for hashes created by both DVSH and 

THN. 

Table 2. Performance of the proposed architecture (JEMR) and the baselines, as measured by 
MAP. * and† indicate statistically significant improvements according to Fisher’s randomization 
test with p < 0.05 over the best performing baselines THN [10] and MCNN [41], respectively. 

4.4. Results and Discussion 

Table 2 summarizes the performance of the proposed architecture (JEMR) and six state-

of the-art baselines in terms of MAP for six multi-modal retrieval scenarios (I → T, T → I, I →

IT, T → IT, I → I, and T → T) on two datasets (NUS-WIDE and ImageNet-YahooQA). In 

ImageNet-YahooQA dataset, for the tasks T → T and T → IT, we obtain the textual query from 

a set of related answers in Yahoo QAs dataset and the multi-modal collection items from the 

ImageNet dataset. However, since Yahoo QAs dataset does not contain any images, we do not 

evaluate the methods for I → I and I → IT retrieval tasks on the ImageNet-YahooQA dataset. 

As follows from Table 2, JEMR outperforms all baselines in all of the six retrieval tasks 

with statistically significant difference. This table also indicates that, on average, the performance 

improvement of JEMR relative to DSM, DVSH, THN, and MCNN is higher for the I → IT, T → IT, 

I → I, and T → T, than forI → T and T → I retrieval tasks. This can be explained by the fact that 

Dataset Task CCA-MV CCQ DSM DVSH THN MCNN JEMR 

NUS-WIDE 𝑰 → 𝑻 0.4261 0.4877 0.6415 0.7236 0.7268 0.7381 0.7538* 

𝑻 → 𝑻 0.5381 0.6261 0.6801 0.7109 0.7321 0.7402 0.7833*† 

𝑰 → 𝑰𝑻 0.4563 0.5115 0.6759 0.6983 0.7494 0.7528 0.7984*† 

𝑻 → 𝑰𝑻 0.5449 0.6317 0.6949 0.7532 0.7649 0.7693 0.8092*† 

𝑰 → 𝑰 0.4258 0.4652 0.6568 0.6745 0.7093 0.7113 0.7563*† 

𝑻 → 𝑰 0.4481 0.5165 0.6782 0.7468 0.7572 0.7795 0.7825* 

ImageNet- 
YahooQA 

𝑰 → 𝑻 0.1145 0.2152 0.4142 0.5631 0.6132 0.6092 0.6557*† 

𝑻 → 𝑰 0.1361 0.2389 0.4209 0.5938 0.6341 0.6278 0.6804*† 

𝑻 → 𝑰𝑻 0.2595 0.3725 0.5665 0.6102 0.6383 0.6303 0.6929*† 

𝑻 → 𝑻 0.2437 0.3571 0.4869 0.6029 0.6314 0.6282 0.6872*† 
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DSM, DVSH, THN, and MCNN do not provide any mechanisms to create embeddings or encodings 

shared by both modalities for I → IT and T → IT retrieval tasks. 

By experimenting with the two datasets (NUS-WIDE and Image-Net-YahooQA), we can 

evaluate the effect of existence of explicit relationships between query and collection items in 

training of the proposed network. Table 2 reveals that the methods leveraging deep neural 

networks, i.e., DSM, DVSH, THN, MCNN, and JEMR have higher MAP values than the unsupervised 

base lines, i.e., CCA-MV and CCQ. It can be also concluded that, on average, these improvements 

are higher on ImageNet-YahooQA than on NUS-WIDE. This is because deep neural networks can 

better learn from diverse training data than the shallow baselines. In particular, we can also 

observe that the percentage of improvement of JEMR over its best performing baselines is 

greater on ImageNet-YahooQA than on NUS-WIDE, which can be an indication of superior ability 

of JEMR to generalize to the collection items that do not exist in the multi-modal retrieval training 

data. Al though DVSH and JEMR both use hybrid deep CNN-LSTM Networks, JEMR has a higher 

MAP value than DVSH [9]. This can be attributed to the gated structure of JEMR, which enables 

computing the matching functions via considering local similarity of word embedding vectors as 

well as global similarity of a collection item to a query. 

The results for I → I and T → T tasks were included in Table 2 in order to analyze the 

influence fan additional textual or visual modality (i.e., I → I, and T → T tasks) on the 

performance of JEMR and its baselines. Based on this table, we can conclude that the proposed 

architecture and baseline methods have on average 2.8% higher MAP values for the 𝑇 → 𝐼𝑇 task 

than for T → T task on NUS-WIDE and ImageNet-YahooQA datasets. This improvement is 

statistically significant for all methods and we can deduce that considering additional visual 
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modality can improve the quality of the T → T retrieval task. Following the same reasoning, we 

can conclude that with on average 4.2% higher MAP values on NUS-WIDE dataset, considering 

additional textual modality for the I → I task also provides statistically significant improvement 

for all methods. 

 
              (a) NUS-WIDE (I → T)                           (b) NUS-WIDE (T → I) 

 
      (c) ImageNet-YahooQA (I → T)            (d) ImageNet-YahooQA (T → I) 

Figure 5: Precision-recall curves for the proposed method and the baselines for I → T and T → I 
tasks. 

Similar to the observations made from Table 2, the precision-recall curves in Figures 5 and 

6 indicate superior performance of JEMR over its best-performing baselines for I → T, T → I, T →

T, and T → IT tasks on NUS-WIDE and ImageNet-YahooQA datasets. These figures indicate that 

JEMR and THN have greater performance improvement in comparison to the other baselines on  
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           (a) NUS-WIDE (T → T)                          (b) NUS-WIDE (T → IT) 

 
     (c) ImageNet-YahooQA (T → T)          (d) ImageNet-YahooQA (T → IT) 

Figure 6: Precision-recall curves for the proposed method and the baselines for T → T and T →
IT tasks. 

the ImageNet-YahooQA dataset than on NUS-WIDE, which is an indication of better 

generalization of these two methods to the unseen data. Figure 6 is provided to compare 

precision-recall curves when there retrieval method can get access to an additional visual 

component of the collection items, in addition to their textual components (by comparing T → T 

and T → IT tasks). Figure 6 indicates that JEMR demonstrates greater improvement over the 

baselines for T → IT than for T → T task, which is because JEMR takes into account local 

information between modalities of collection items. 

To investigate the effectiveness of applying accelerated search on performance of the 

proposed method, we combined JEMR with k-NN and approximate nearest neighbors (ANN) 

search methods [22] and report the results in Table 3. JEMR+KNN uses a brute-force search 

method to find all nearest neighbors, while JEMR+ANN applies approximations, which result in a 
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Table 3. MAP of JEMR on NUS-WIDE dataset when different search methods are used. 

Task I → T T → I I → IT T → IT 

JEMR+ANN 0.7381 0.7303 0.7723 0.7926 
JEMR+KNN 0.7477 0.7791 0.7921 0.8035 
JEMR 0.7538 0.7825 0.7984 0.8092 

Table 4. MAP of JEMR on NUS-WIDE dataset when different CNN networks are used in the 
proposed architecture. 

Task I → T T → I I → IT T → IT 

AlexNet 0.7538 0.7825 0.7984 0.8092 
ResNet152 0.7932 0.8053 0.8178 0.8223 
InceptionV3 0.7986 0.8114 0.8250 0.8377 
Inception-ResNet-v2 0.8049 0.8230 0.8287 0.8424 

smaller number of collection items than k-NN that have to be scored with the relevance matching 

layers of the proposed architecture. In JEMR+ANN and JEMR+KNN, the collection items are 

represented by a single concept vector that is an average of all of its concept vectors. In this 

experiment, we set the size of the neighborhood and the maximum number of iterations to be 

1000 for both JEMR+ANN and JEMR+KNN. 

Table 3 indicates that, although JEMR uses a brute-force search method and examines all 

collection items, its MAP is, on average, around 5% higher than MAP of JEMR+ANN. On the other 

hand, JEMR+KNN has, on average, around 5% higher MAP than JEMR+ANN. Without considering 

the time to locate objects of collection items in the embedding space, we observed that, on 

average, JEMR is around 1200 times and JEMR+KNN is around 150 times slower than JEMR+ANN.  

Therefore, we can conclude that using an approximate search method can substantially decrease 

the search time with a negligible degradation in accuracy. 

Table 4 reflects the impact of state-of-the-art deep CNN architectures, such as 

ResNet152[24], Inception V3[53] and Inception-ResNet-v2[52] on performance of JEMR, if they 
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are utilized for image feature extraction instead of AlexNet. Similar to the training of AlexNet, the 

parameters of these three networks are pre-trained using the training data from ImageNet 

dataset with the parameters of their last two layers fine-tuned based on the training data, once 

using MS-COCO and once using NUS-WIDE datasets. Table 4 indicates that utilizing Inception-

ResNet-v2,ResNet 152 and Inception V3 results in higher MAP than AlexNet, with Inception-

ResNet-v2 producing a statistically significant improvement in MAP over the other networks, 

according to the Fisher’s randomization test with p < 0.05. 
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CHAPTER 5 FUTURE WORKS 

We will examine our multi-modal retrieval method in the field of e-commerce search as 

the retrieved items in this field usually contain different modalities such as text, image, and video.  

We also plan to extend our work in this thesis to improve the retrieval accuracy of medical 

information retrieval systems for clinical decision support [7, 2] by using general-purpose or 

domain-specific knowledge bases [8, 3]. We will also investigate the potential of utilizing topic 

modeling approaches in our proposed multimodal retrieval method [4]. 

  



27 
 

 

CHAPTER 6 CONCLUSIONS 

This thesis presents a novel neural architecture for multi-modal retrieval when the query 

has a single modality and collection items can have multiple modalities. The proposed 

architecture utilizes a hybrid LSTM-CNN network to project the visual modalities and the skip-

gram model to project the textual modalities into a common subspace, which contains 

embeddings of words in the textual modalities and embeddings of words that describe the visual 

modalities. The proposed architecture also includes a gating network to regulate the information 

flow by accounting for concept level and topic level matching scores. The experiments on 

heterogeneous datasets indicate that the proposed method outperforms state-of-the-art 

baselines. We hypothesize that the proposed architecture can also be successfully applied to 

multi-modal e-commerce search and leave validation of this hypothesis to future work. 
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Recent advances in deep learning and distributed representations of images and text have 

resulted in the emergence of several neural architectures for cross-modal retrieval tasks, such as 

searching collections of images in response to textual queries and assigning textual descriptions 

to images. However, the multi-modal retrieval scenario, when a query can be either a text or an 

image and the goal is to retrieve both a textual fragment and an image, which should be 

considered as an atomic unit, has been significantly less studied. In this thesis, we propose a 

gated neural architecture to project image and keyword queries as well as multi-modal retrieval 

units into the same low-dimensional embedding space and perform semantic matching in this 

space. The proposed architecture is trained to minimize structured hinge loss and can be applied 

to both cross and multi-modal retrieval. Experimental results for six different cross- and multi-

modal retrieval tasks obtained on publicly available datasets indicate superior retrieval accuracy 

of the proposed architecture in comparison to the state-of-the-art baselines.
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