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Abstract—The problem of searching over a large number of
data streams for identifying one that holds certain features of
interest is considered. The data streams are assumed to be
generated by one of two possible statistical distributions with
cumulative distribution functions F0 and F1 and the objective
is to identify one sequence generated by F1 as quickly as
possible, and prior to a pre-specified deadline. Furthermore, it
is assumed that the generation of the data streams follows a
known dependency kernel such that the likelihood of a sequence
being generated by F1 depends on the underlying distributions
of the other data streams. The optimal sequential sampling
strategy is characterized, and numerical evaluations are provided
to illustrate the gains of incorporating the information about the
dependency structure into the design of the sampling process.

I. INTRODUCTION

Recent advances in complex networks (e.g., energy grids)

and information acquisition technologies (e.g., sensor net-

works) have led to the advent of high-dimensional data sets,

which in turn propels the needs for computationally affordable

and fast information processing mechanisms. Challenges as-

sociated with high-dimensional data analysis are multi-faceted

and include modeling, communicating, storing, and searching,

to name a few. Searching for features or anomalies in high-

dimensional data is ubiquitous and has a central role in many

domains, which often manifests itself as finding features (e.g.,

medical records [1]), detecting anomalies (e.g., fraud detection

[2]), or identifying opportunities (e.g., spectrum sensing [3]–

[5]).

In this paper we consider the problem of searching for

features in high-dimensional data. Specifically, we consider

a dataset consisting of a large number of data streams which

are constantly generating information and aim to identify one

of the data streams that holds a feature of interest as quickly

as possible. In order to harness the complexity and quality

of the decision, we focus on a sequential and data-adaptive

information gathering process in which measurements are

taken one at a time and it is dynamically decided whether

to form a decision based on the information accumulated or

to proceed with collecting more information. This problem

when data streams are generated by one the two possible

underlying mechanisms is studied in detail in [6], where it
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is assumed that all data streams, independently of each other,

have equal chances of carrying the feature of interest. In this

paper, we focus on a similar setting with the exception that

we assume that there exists an inherent dependency among

the generation of the data streams such that whether a data

stream will bear the feature of interest depends on the rest

of the data streams. Furthermore, we focus the attention on a

finite-horizon quickest search strategy, in which the decision

is delay-limited and has to be declared prior to a pre-specified

deadline.

The remainder of this paper is organized as follows. In

Section II the quickest search problem and the underlying

data generation model is formulated and Section III provides

the optimal finite-horizon sampling strategy. Numerical eval-

uations are presented in Section IV and Section V concludes

the paper.

II. PROBLEM FORMULATION

A. Observation Model

Consider n sequences of real-valued observations, denoted

by {X i}ni=1, and define Xi
j as the jth element of sequence

X i, i.e.,

X i �
= {Xi

1, X
i
2, . . . } . (1)

The elements within each sequence are independent and iden-

tically distributed (i.i.d.). The observations from the normal

sequences are generated by a distribution with cumulative

distribution function (CDF) F0 and those from the outlier

ones are generated by a different distribution with CDF F1.

By using this dichotomous model, the observations obey the

following hypothesis model:

H0 : Xi
j ∼ F0,

H1 : Xi
j ∼ F1.

(2)

The probability density functions corresponding to F0 and F1,

are denoted by f0 and f1, respectively.

B. Correlation Structure

Generation of sequences {X1,X2, . . . ,Xn} is assumed to

follow a known dependency kernel such that the prior prob-

ability that sequence Xi obeys H1 is controlled by the distri-

bution of its proceeding sequence. Specifically, we have

P(T1 = H1) = ε , (3)
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and

P(Ti = H1 | Ti−1 = Hj) = εj , for j ∈ {0, 1} , (4)

where ε0 �= ε1. The prior probability that Xi, for i ∈
{1, . . . , n}, is generated by F1 can be obtained using (3) and

(4), and it is

P(Ti = H1) = ε · (ε1 − ε0)
i−1 + ε0 · 1− (ε1 − ε0)

i−1

1− (ε1 − ε0)
. (5)

C. Sampling Model

In order to identify one sequence generated by F1 as quickly

as possible, the sampling procedure collects observations se-

quentially until a reliable decision can be formed. By denoting

the sample taken at time t by Yt, and by defining st as the

index of the sequence observed at time t ∈ N, the sampling

procedure is initiated at time t = 1 by setting s1 = 1.

Depending on the information accumulated up to time t, the

sampling procedure takes one of the following three possible

actions:

A1) Detection: stop taking further samples due to having

enough confidence to declare that the sequence st is

generated according to F1.

A2) Observation: take one more sample from the same

sequence at time t + 1 due to lack of confidence to

make a decision. Hence, we have st+1 = st.
A3) Exploration: discard sequence st due to having enough

confidence that this sequence is generated by F0 and

switch to its following sequence, i.e., we have st+1 =
st + 1.

In order to formalize the sampling procedure, we define

τ as the stopping time, at which the sampling procedure is

terminated and action A1 is taken. At time t ∈ {1, . . . , τ −
1}, in order to determine which of the two actions A2 or

A3 should be performed, we define the switching function

ψ : {1, . . . , τ − 1} → {0, 1}, where ψ(t) = 0 indicates that

we should continue taking one more sample from the current

sequence, and ψ(t) = 1 indicates that the current sequence

should be discarded and a sample from the next sequence

should be taken, i.e.,

ψ(t) =

{
0 action A2 and st+1 = st
1 action A3 and st+1 = st + 1

. (6)

D. Problem Formulation

The optimal sampling procedure can be characterized

uniquely by finding the optimal stopping time and switch-

ing sequence. In such sequential and data-adaptive sampling

procedures there exists an inherent tension between decision

quality and decision delay. Hence designing the optimal sam-

pling strategy involves striking a balance between these two

performance measures. In this paper, we focus on minimizing

the expected decision delay subject to a controlled decision

quality by solving

infτ∈T ,ψτ E[τ ]

s.t. P(Tsτ = H0) ≤ β
. (7)

And, in particular, the focus is on designing a finite-horizon

sampling procedure in which a decision should be performed

by a pre-specified time T ∈ N.

III. OPTIMAL FINITE-HORIZON SAMPLING

By using the discussions in [6] and [7], the solution for

the canonical quickest search optimization problem formulated

in (7) can be equivalently obtained by solving the following

Bayesian formulation:

inf
τ∈T ,ψτ

[P(Tsτ = H0) + cβE[τ ]] , (8)

where cβ is a constant (function of β) through which the costs

associated with decision delay and accuracy are integrated into

one cost function. Next, given the information accumulated

up to time t, we characterize the cost of the detection,

observation, and exploration actions, based on which we can

identify the best next action. By defining G̃T
t (Ft) where

Ft
�
= {Y1, . . . , Yt}, as the cost of the best action at time t, we

have

G̃T
t (Ft)

�
= min{J̃T

t;1(Ft), cβ + min
i=2,3

{J̃T
t;i(Ft)}} , (9)

where J̃T
t;1(Ft), cβ + JT

t;2(Ft), and cβ + JT
t;3(Ft) are the

costs pertinent to detection, observation, and exploration,

respectively. Furthermore, we have the following recursive

connections between {JT
t;i(Ft)}3i=1 and G̃T

t (Ft):

A1 : J̃T
t;1(Ft) = 1− πt (10)

A2 : J̃T
t;2(Ft) = E[G̃T

t+1(Ft+1)|Ft, ψ(t) = 0] (11)

A3 : J̃T
t;3(Ft) = E[G̃T

t+1(Ft+1)|Ft, ψ(t) = 1] (12)

To proceed, let us define πt as the posterior probability that

the sequence observed at time t, i.e., sequence st, is generated

according to F1. Hence, we have

πt
�
= P(Tst = H1 | Ft) . (13)

By using the correlation structure described in Subsection II-B,

the posterior probability at time t + 1, for t ∈ N, can be

obtained recursively in terms of πt according to

πt+1

=
πtf1(Yt+1)

πtf1(Yt+1) + (1− πt)f0(Yt+1)
· I(ψ(t) = 0)

+
π̄tf1(Yt+1)

π̄tf1(Yt+1) + (1− π̄t)f0(Yt+1)
· I(ψ(t) = 1) , (14)

where I(·) denotes the indicator function, and we have defined

π̄t
�
= πt(ε1 − ε0) + ε0 . (15)

Furthermore, for t = 1, we have

π1 =
εf1(Y1)

εf1(Y1) + (1− ε)f0(Y1)
. (16)

By taking into account the recursive form in (14), and by

following the same line of argument as in [6], the following

lemma shows that the optimal decision rule for stopping or

switching at time t is related to Ft only through πt.
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Lemma 1: The functions {J̃T
t;i(Ft)}3i=1 depend on Ft only

through πt and can be rewritten as functions of πt which we

denote by {JT
t;i(πt)}3i=1.

Proof: By definition we have J̃T
t;1(Ft) = 1− πt, which

establishes the claim for i = 1. Furthermore, at time T , the

minimal cost function G̃T
T (FT ) is dominated by that of the

detection action, and we immediately have G̃T
T (FT ) = 1−πT .

By using backward induction with starting point t = T , we

next show that if G̃T
t+1(Ft+1) depends on Ft+1 only through

πt+1, then the functions {J̃T
t;i(Ft)}3i=2 and G̃T

t (Ft) depend on

Ft only through πt. For this purpose, we denote G̃T
t+1(Ft+1)

by GT
t+1(πt+1), based on which from (11) and (14) we obtain

J̃T
t;2(Ft) = E[GT

t+1(πt+1)|Ft, ψ(t) = 0]

=

∫
GT

t+1

(
f1(Yt+1)πt

f1(Yt+1)πt + f0(Yt+1)(1− πt)

)

× (f1(Yt+1)πt + f0(Yt+1)(1− πt)) dYt+1 . (17)

The integrand of (17) clearly depends on Ft only through πt,

which we denote by JT
t;2(πt). Similarly, based on (12) and

(14) we have

J̃T
t;3(Ft) = E[GT

t+1(πt+1)|Ft, ψ(t) = 1] ,

=

∫
GT

t+1

(
f1(Yt+1)π̄t

f1(Yt+1)π̄t + f0(Yt+1)(1− π̄t)

)

× (f1(Yt+1)π̄t + f0(Yt+1)(1− π̄t)) dYt+1 . (18)

By recalling that π̄t = πt(ε1 − ε0) + ε0, it is concluded that

J̃T
t;3(Ft) depends on Ft through πt, denoted by JT

t;3(πt). Next

by recalling that

G̃T
t (Ft) = min{J̃T

t;1(Ft), cβ +min{J̃T
t;2(Ft), J̃

T
t;3(Ft)}} ,

we immediately have

G̃T
t (Ft) = min{JT

t;1(πt), cβ +min{JT
t;2(πt), J

T
t;3(πt)}} ,

which indicates that G̃T
t (Ft) depends on Ft through πt,

denoted by GT
t (πt)

By leveraging the result of Lemma 1, we next establish that

functions JT
t;2(πt) and JT

t;3(πt) are concave in πt.

Lemma 2: The functions JT
t;2(πt) and JT

t;3(πt) are non-

negative concave functions of πt for πt ∈ [0, 1].
Proof: Non-negativity of these functions follows from the

fact that at the stopping time the minimal cost is GT
T (πT ) =

1−π, which is non-negative, in conjunction with the recursive

connection between {JT
t;i(πt)}3i=1 and GT

t+1(πt+1) provided

in (11) and (12).

The concavities of these functions can be established

through backward induction by proving that the minimal cost

function GT
t+1(πt+1) being concave leads to concave struc-

tures for JT
t;2(πt) and JT

t;3(πt), and consequently a concave

structure for GT
t (πt). For this purpose, at time T we have

GT
T (πT ) = 1 − πT , confirming that the function GT

t (πT ) is

concave at the starting point of the inductive argument. By

assuming that GT
t+1(πt+1) is concave, we next show that the

functions JT
t;2(πt) and JT

t;3(πt) are concave. For this purpose,

for any two arbitrary probability terms π1
t and π2

t we define

π3
t as their convex combination for an arbitrary λ ∈ [0, 1], i.e.,

π3
t � λπ1

t + (1− λ)π2
t , (19)

and aim to show that for i ∈ {2, 3}
λJT

t;i(π
1
t ) + (1− λ)JT

t;i(π
2
t ) ≥ JT

t;i(π
3
t ) . (20)

By using (17)-(18) and expanding the left hand of (20) we

obtain

λJT
t;i(π

1
t ) + (1− λ)JT

t;i(π
2
t )

=

∫
[μiG

T
t+1(π

1
t+1) + (1− μi)G

T
t+1(π

2
t+1)]

× [λqi(π
1
t ) + (1− λ)qi(π

2
t )] dYt+1 , (21)

where we have defined

μi
�
=

λqi(π
1
t )

λqi(π1
t ) + (1− λ)qi(π2

t )
, (22)

q2(π)
�
= πf1(Yt+1) + (1− π)f0(Yt+1) , (23)

and, q3(π)
�
= (π(ε1 − ε0) + ε0)f1(Yt+1)

+ [1− π(ε1 − ε0)− ε0]f0(Yt+1) . (24)

By using the concavity of GT
t+1(πt+1) we obtain the following

lower bound on (21):

λJT
t;i(π

1
t ) + (1− λ)JT

t;i(π
2
t )

≥
∫

GT
t+1(μiπ

1
t+1 + (1− μi)π

2
t+1)

× [λqi(π
1
t ) + (1− λ)qi(π

2
t )] dYt+1 . (25)

Next, we remark that it can be readily verified that

π3
t+1 = μiπ

1
t+1 + (1− μi)π

2
t+1 , (26)

and , qi(π
3
t ) = λqi(π

1
t ) + (1− λ)qi(π

2
t ) . (27)

Hence, we can re-write (25) as

λJT
t;i(π

1
t ) + (1− λ)JT

t;i(π
2
t )

≥
∫

GT
t+1(π

3
t+1)qi(π

3
t ) dYt+1 = JT

t;i(π
3
t ) , (28)

which proves the concavity of {JT
t;i(πt)}3i=2 in πt.

Given lemmas above, the following theorems establish the

optimal stopping time and the switching rule at time t as

functions of πt.

Theorem 1 (Stopping Time): For the finite-horizon quickest

search problem in (8), the optimal stopping time is τ∗T =
inf{t : πt ≥ πT

U} where πT
U is a solution of

1− πT
U = cβ + min

i=2,3
JT
t;i(π

T
U ) . (29)

Proof: According to (9), the procedure stops taking

further samples when the cost associated with terminating

the procedure falls below those associated with the observa-

tion and exploration actions, i.e., JT
t;1(Ft) becomes less than

cβ + JT
t;2(πt) or cβ + JT

t;3(πt). In other words,

τ∗T = inf{t : πt ≥ 1− cβ − min
i=2,3

JT
t;i(πt)} . (30)
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Fig. 1. An illustration of GT
t (πt).

This characterization of the stopping time implies that the

stopping rule can be equivalently cast as comparing the

probability term πt with a threshold. By taking into account

that functions {JT
t;i(πt)}3i=2 are concave in πt, the relative

structure of the minimal dynamic cost GT
t (π) and stopping

cost function 1 − πt is depicted in Fig. 1. Based on this

figure, and the optimal form of the stopping time given in

(29), the optimal stopping rule can be equivalently stated as

in Theorem 1 with πT
U marked in Fig. 1 and defined in (29).

Theorem 2 (Switching Rule): For the finite-horizon quick-

est search problem in (8), the optimal switching rule at time

t is to switch to a new sequence if and only if JT
t;2(πt) >

JT
t;3(πt).

Proof: According to (9), the exploration action is per-

formed when the cost associated with switching to a new

sequence falls below the one associated with the observation

action, i.e., when cβ+JT
t;3(πt) becomes less than cβ+JT

t;2(πt).

IV. NUMERICAL EVALUATIONS

In this section we present numerical results by placing the

central focus on comparing the performance of the quickest

search procedure in this paper, which takes into account the

correlation structure, and that of the one in [6] that does not

take into account the correlation structure. We consider the

setting ε = 0.4, ε0 = 0.1, ε1 = 0.9, and target at controlling

the error probability below β = 0.01. It is also assumed that

F0 and F1 are zero-mean Gaussian with variances σ2
0 and σ2

1 ,

respectively. In Figures 2 and 3, the expected stopping time

and error probability are, respectively, shown versus σ2
1/σ

2
0 . It

is observed that while in both settings, the error probabilities

are kept below the desired value β, ignoring the correlation

structure leads to increased delay in reaching a decision, and

therefore, the corresponding sampling strategy is suboptimal

to the one characterized in this paper.

V. CONCLUSIONS

We have characterized an optimal sequential sampling strat-

egy for finite-horizon quickest search over a large number

of correlated data streams that are generated by one of two

possible statistical distributions. The generation of the data

streams follows a pre-specified correlation structure in which
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Fig. 3. Stopping time versus SNR.

the prior probability that a sequence is generated according

to the distribution of interest is governed by the distribution

of its preceding data stream. The proposed sampling strategy

guarantees achieving the smallest expected delay in reaching

a decision while an upper bound is enforced on the rate of

erroneous decisions. The gains of this strategy over an existing

one that does not take into consideration the correlation

structure have been assessed numerically.
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